Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2245895

ABSTRACT

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Subject(s)
COVID-19 , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Matrix Metalloproteinase 9/metabolism , Mice, Inbred mdx , Tumor Necrosis Factor-alpha/metabolism , Post-Acute COVID-19 Syndrome , Neopterin/metabolism , COVID-19/pathology , SARS-CoV-2 , Muscular Dystrophy, Duchenne/genetics , Fibrosis , Muscle, Skeletal/metabolism , Disease Models, Animal
2.
Antib Ther ; 4(3): 135-143, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319139

ABSTRACT

BACKGROUND: Current worldwide pandemic coronavirus disease 2019 (COVID-19) with high numbers of mortality rates and huge economic problems require an urgent demand for safe and effective vaccine development. Inactivated SARS-CoV2 vaccine with alum. Hydroxide can play an important role in reducing the impacts of the COVID-19 pandemic. In this study, vaccine efficacy was evaluated through the detection of the neutralizing antibodies that protect mice from challenge with SARS-CoV 2 3 weeks after the second dose. We conclude that the vaccine described here has safety and desirable properties, and our data support further development and plans for clinical trials. METHODS: Characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069; and MW250352 at GenBank were isolated from Egyptian patients SARS-CoV-2-positive. Development of inactivated vaccine was carried out in a BSL-3 facilities and the immunogenicity was determined in mice at two doses (55 and 100 µg per dose). RESULTS: The distinct cytopathic effect induced by SARS-COV-2 propagation on Vero cell monolayers and the viral particles were identified as Coronaviridae by transmission electron microscopy and RT-PCR on infected cells cultures. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless of the dose concentration, with excellent safety profiles and no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by the wild virus challenge of the vaccinated mice and viral replication detection in lung tissues. CONCLUSIONS: Vaccinated mice recorded complete protection from challenge infection via inhibition of SARS-COV-2 replication in the lung tissues of mice following virus challenge, regardless of the level of serum neutralizing antibodies. This finding will support future trials for the evaluation of an applicable SARS-CoV-2 vaccine candidate.

3.
Crit Care Explor ; 3(3): e0372, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1158029

ABSTRACT

OBJECTIVES: About 15% of hospitalized coronavirus disease 2019 patients require ICU admission, and most (80%) of these require invasive mechanical ventilation. Lung-protective ventilation in coronavirus disease 2019 acute respiratory failure may result in severe respiratory acidosis without significant hypoxemia. Low-flow extracorporeal Co2 removal can facilitate lung-protective ventilation and avoid the adverse effects of severe respiratory acidosis. The objective was to evaluate the efficacy of extracorporeal Co2 removal using the Hemolung Respiratory Assist System in correcting severe respiratory acidosis in mechanically ventilated coronavirus disease 2019 patients with severe acute respiratory failure. DESIGN: Retrospective cohort analysis of patients with coronavirus disease 2019 mechanically ventilated with severe hypercapnia and respiratory acidosis and treated with low-flow extracorporeal Co2 removal. SETTING: Eight tertiary ICUs in the United States. PATIENTS: Adult patients supported with the Hemolung Respiratory Assist System from March 1, to September 30, 2020. INTERVENTIONS: Extracorporeal Co2 removal with Hemolung Respiratory Assist System under a Food and Drug Administration emergency use authorization for coronavirus disease 2019. MEASUREMENTS AND MAIN RESULTS: The primary outcome was improvement in pH and Paco2 from baseline. Secondary outcomes included survival to decannulation, mortality, time on ventilator, and adverse events. Thirty-one patients were treated with Hemolung Respiratory Assist System with significant improvement in pH and Pco2 in this cohort. Two patients experienced complications that prevented treatment. Of the 29 treated patients, 58% survived to 48 hours post treatment and 38% to hospital discharge. No difference in age or comorbidities were noted between survivors and nonsurvivors. There was significant improvement in pH (7.24 ± 0.12 to 7.35 ± 0.07; p < 0.0001) and Paco2 (79 ± 23 to 58 ± 14; p < 0.0001) from baseline to 24 hours. CONCLUSIONS: In this retrospective case series of 29 patients, we have demonstrated efficacy of extracorporeal Co2 removal using the Hemolung Respiratory Assist System to improve respiratory acidosis in patients with severe hypercapnic respiratory failure due to coronavirus disease 2019.

SELECTION OF CITATIONS
SEARCH DETAIL